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Abstract
We discuss the case of massive gravitons and their relation with the
cosmological constant, considered as an eigenvalue of a Sturm–Liouville
problem. A variational approach with Gaussian trial wavefunctionals is used
as a method to study such a problem. We approximate the equation to one loop
in a Schwarzschild background and a zeta function regularization is involved
to handle divergences. The regularization is closely related to the subtraction
procedure appearing in the computation of the Casimir energy in a curved
background. A renormalization procedure is introduced to remove the infinities
together with a renormalization group equation.

PACS numbers: 04.60.−m, 04.62.+v, 11.10.Gh

1. Introduction

There are two interesting and fundamental questions of Einstein gravity which have not
received an answer yet: one of these is the cosmological constant �c and the other one is
the existence of gravitons with or without mass. While the massless graviton is a natural
consequence of the linearized Einstein field equations, the massive case is more delicate. At
the linearized level, we are forced to introduce the Pauli–Fierz mass term [1]

SPF = m2
g

8κ

∫
d4x

√
−g(4)[hµνhµν − h2], (1)

where mg is the graviton mass and κ = 8πG. G is the Newton constant. The Pauli–Fierz mass
term breaks the symmetry hµν −→ hµν + 2∇(µ ξ ν), but does not introduce ghosts. Boulware
and Deser tried to include a mass in the general framework and not simply in the linearized
theory. They discovered that the theory is unstable and produces ghosts [2]. Another problem
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appearing when one considers a massive graviton in Minkowski space is the limit mg → 0:
the analytic expression of the graviton propagator in the massive and in the massless limit does
not coincide. This is known as van Dam–Veltman–Zakharov (vDVZ) discontinuity [3]. Other
than the appearance of a discontinuity in the massless limit, they showed that a comparison
with experiment led the graviton to be rigorously massless. Actually, we know that there exist
bounds on the graviton rest mass that put the upper limit on a value less than 10−62–10−66 g
[4]. Recently, there has been a considerable interest in massive gravity theories, especially
about the vDVZ discontinuity examined in de Sitter and anti-de Sitter space. Indeed in a series
of papers, it has been shown that the vDVZ discontinuity disappears in the massless, at least
at the tree level approximation [5], while it reappears at one loop [6]. If we fix our attention
on the positive cosmological term expanded to one loop, we can see that its structure is

S�c
= �c

4κ

∫
d4x

√
−g(4)

[
hµνhµν − 1

2
h2

]
, (2)

which is not of the Pauli–Fierz form1. Nevertheless, we have to note that the nontrace terms
of SPF and S�c

can be equal if

m2
g

2
= �c. (3)

In other words the graviton mass and the cosmological constant seem to be two aspects of the
same problem. Furthermore, the cosmological constant suffers the same problem of smallness,
because the more recent estimates on �c give an order of 10−47 GeV4, while a crude estimate
of the zero point energy (ZPE) of some field of mass m with a cut-off at the Planck scale gives
EZPE ≈ 1071 GeV4 with a difference of about 118 orders [8]. One interesting way to relate
the cosmological constant to the ZPE is given by the Einstein field equations with our matter
fields

Rµν − 1
2gµνR

(4) + �cgµν = Gµν + �cgµν = 0, (4)

where Gµν is the Einstein tensor. If we introduce a time-like unit vector uµ such that u · u =
−1, then

Gµνu
µuµ = �c. (5)

This is simply the Hamiltonian constraint written in terms of the equation of motion. However,
we would like to compute not �c, but its expectation value 〈�c〉 on some trial wavefunctional.
On the other hand,

√
g

2κ
Gµνu

µuµ =
√

g

2κ
R +

2κ√
g

(
π2

2
− πµνπµν

)
= −H, (6)

where R is the scalar curvature in three dimensions. Therefore,

〈�c〉
κ

= − 1

V

〈∫
�

d3xH
〉

= − 1

V

〈∫
�

d3x�̂�

〉
, (7)

where the last expression stands for

1

V

∫
D[gij ]�∗[gij ]

∫
�

d3xH�[gij ]∫
D[gij ]�∗[gij ]�[gij ]

= 1

V

〈�| ∫
�

d3x�̂�|�〉
〈�|�〉 = −�

κ
, (8)

and where we have integrated over the hypersurface �, divided by its volume and functionally
integrated over quantum fluctuation. Note that equation (8) can be derived starting
with the Wheeler–De Witt equation (WDW) [9] which represents invariance under time

1 For this purpose, see also [7].
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reparametrization. Equation (8) represents the Sturm–Liouville problem associated with
the cosmological constant. The related boundary conditions are dictated by the choice of
the trial wavefunctionals which, in our case, are of the Gaussian type. Different types
of wavefunctionals correspond to different boundary conditions. Extracting the TT tensor
contribution from equation (8) approximated to second order in perturbation of the spatial part
of the metric into a background term, ḡij , and a perturbation, hij , we get �̂⊥

� =
1

4V

∫
�

d3x
√

ḡGijkl

[
(2κ)K−1⊥(x, x)ijkl +

1

(2κ)
(	2)

a
jK

⊥(x, x)iakl

]
. (9)

Here Gijkl represents the inverse De Witt metric and all indices run from one to three. The
propagator K⊥ (x, x)iakl can be represented as

K⊥ (−→x ,−→y )iakl :=
∑

τ

h
(τ)⊥
ia (−→x )h

(τ)⊥
kl (−→y )

2λ(τ)
, (10)

where h
(τ)⊥
ia (−→x ) are the eigenfunctions of 	2, whose explicit expression for the massive case

will be shown in the following section. τ denotes a complete set of indices and λ(τ) are a set of
variational parameters to be determined by the minimization of equation (9). The expectation
value of �̂⊥

� is easily obtained by inserting the form of the propagator into equation (9) and
minimizing with respect to the variational function λ (τ). Thus the total one-loop energy
density for TT tensors becomes

�

8πG
= − 1

4V

∑
τ

[√
ω2

1(τ ) +
√

ω2
2(τ )

]
. (11)

The above expression makes sense only for ω2
i (τ ) > 0, where ωi are the eigenvalues of 	2.

2. The massive graviton transverse traceless (TT) spin-2 operator for the
Schwarzschild metric and the WKB approximation

The next step is the evaluation of equation (11), when the graviton has a rest mass. Following
Rubakov [13], the Pauli–Fierz term can be rewritten in such a way to explicitly violate Lorentz
symmetry, but to preserve the three-dimensional Euclidean symmetry. In Minkowski space it
takes the form

Sm = − 1

8κ

∫
M

d4x
√−gLm, (12)

where

Lm = m2
0h

00h00 + 2m2
1h

0ih0i − m2
2h

ijhij + m2
3h

iihjj − 2m2
4h

00hii (13)

A comparison between Sm and the Pauli–Fierz term shows that they can be set equal if we
make the following choice2

m2
0 = 0 m2

1 = m2
2 = m2

3 = m2
4 = m2 > 0. (14)

If we fix the attention on the very special case m2
0 = m2

1 = m2
3 = m2

4 = 0; m2
2 = m2

g > 0, we
can see that the trace part disappears and we get

Sm = m2
g

8κ

∫
d4x

√
−ĝ[hijhij ] 
⇒ Hm = −m2

g

8κ

∫
d3xN

√
ĝ[hijhij ]. (15)

2 See also Dubovski [14] for a detailed discussion about the different choices of m1, m2, m3 and m4.
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Its contribution to the spin-2 operator for the Schwarzschild metric will be

(	2h
TT)

j

i := −(	T hTT)
j

i + 2(RhTT)
j

i +
(
m2

gh
TT

)j

i
(16)

and

−(	T hTT)
j

i = −	S(h
TT)

j

i +
6

r2

(
1 − 2MG

r

)
(hTT)

j

i . (17)

	S is the scalar curved Laplacian, whose form is

	S =
(

1 − 2MG

r

)
d2

dr2
+

(
2r − 3MG

r2

)
d

dr
− L2

r2
(18)

and Ra
j is the mixed Ricci tensor whose components are

Ra
i =

{
−2MG

r3
,
MG

r3
,
MG

r3

}
. (19)

This implies that the scalar curvature is traceless. We are therefore led to study the following
eigenvalue equation:

(	2h
TT)

j

i = ω2hi
j (20)

where ω2 is the eigenvalue of the corresponding equation. In doing so, we follow Regge and
Wheeler in analysing the equation as modes of definite frequency, angular momentum and
parity [10]. In particular, our choice for the three-dimensional gravitational perturbation is
represented by its even-parity form

(heven)ij (r, ϑ, φ) = diag[H(r),K(r), L(r)]Ylm(ϑ, φ). (21)

Defining reduced fields and passing to the proper geodesic distance from the throat of the
bridge, the system (20) becomes



[
− d2

dx2
+

l(l + 1)

r2
+ m2

1(r)

]
f1(x) = ω2

1,lf1(x)[
− d2

dx2
+

l(l + 1)

r2
+ m2

2(r)

]
f2(x) = ω2

2,lf2(x)

(22)

where we have defined r ≡ r(x) and{
m2

1(r) = m2
g + U1(r) = m2

g + m2
1(r,M) − m2

2(r,M)

m2
2(r) = m2

g + U2(r) = m2
g + m2

1(r,M) + m2
2(r,M).

(23)

m2
1(r,M) → 0 when r → ∞ or r → 2MG and m2

2(r,M) = 3MG/r3. Note that, while m2
2(r)

is constant in sign, m2
1(r) is not. Indeed, for the critical value r̄ = 5MG/2,m2

1(r̄) = m2
g and

in the range (2MG, 5MG/2) for some values of m2
g , m2

1(r̄) can be negative. It is interesting
therefore to concentrate in this range, where m2

1(r,M) vanishes when compared with m2
2(r,M).

So, in a first approximation we can write{
m2

1(r) � m2
g − m2

2(r0,M) = m2
g − m2

0(M)

m2
2(r) � m2

g + m2
2(r0,M) = m2

g + m2
0(M),

(24)

where we have defined a parameter r0 > 2MG and m2
0(M) = 3MG

/
r3

0 . The main reason for
introducing a new parameter resides in the fluctuation of the horizon that forbids any kind of
approach. It is now possible to explicitly evaluate equation (11) in terms of the effective mass.
To further proceed, we use the WKB method used by ‘t Hooft in the brick wall problem [11]
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and we count the number of modes with frequency less than ωi, i = 1, 2. This is given
approximately by (r ≡ r(x))

g̃(ωi) = 1

2π

∫ +∞

−∞
dx

∫ √
k2
i (r, l, ωi)(2l + 1) dl, (25)

Here it is understood that the integration with respect to x and l is taken over those values which
satisfy k2

i (r, l, ωi) � 0, i = 1, 2. Thus the one-loop total energy for TT tensors becomes

�

8πG
= ρ1 + ρ2 = − 1

16π2

2∑
i=1

∫ +∞
√

m2
i (r)

ω2
i

√
ω2

i − m2
i (r) dωi, (26)

where we have included an additional 4π coming from the angular integration.

3. One-loop energy regularization and renormalization

Here, we use the zeta function regularization method to compute the energy densities ρ1 and
ρ2. Note that this procedure is completely equivalent to the subtraction procedure of the
Casimir energy computation where the zero point energy (ZPE) in different backgrounds with
the same asymptotic properties is involved. For this purpose, we introduce the additional mass
parameter µ in order to restore the correct dimension for the regularized quantities. Such an
arbitrary mass scale emerges unavoidably in any regularization scheme. Then we have

ρi(ε) = 1

16π2
µ2ε

∫ +∞
√

m2
i (r)

dωi

ω2
i(

ω2
i − m2

i (r)
)ε− 1

2

. (27)

The integration has to be meant in the range where ω2
i − m2

i (r) � 0. One gets

ρi(ε) = m4
i (r)

256π2

[
1

ε
+ ln

(
µ2

m2
i (r)

)
+ 2 ln 2 − 1

2

]
, (28)

i = 1, 2. To handle with the divergent energy density, we extract the divergent part of �, in
the limit ε → 0 and we set

�div = G

32πε

(
m4

1(r) + m4
2(r)

)
. (29)

Thus, the renormalization is performed via the absorption of the divergent part into the re-
definition of the bare classical constant �

� → �0 + �div. (30)

The remaining finite value for the cosmological constant reads

�0

8πG
= 1

256π2

{
m4

1(r)

[
ln

(
µ2∣∣m2
1(r)

∣∣
)

+ 2 ln 2 − 1

2

]

+ m4
2(r)

[
ln

(
µ2

m2
2(r)

)
+ 2 ln 2 − 1

2

]}
= (ρ1(µ) + ρ2(µ)) = ρTT

eff (µ, r). (31)

The quantity in equation (31) depends on the arbitrary mass scale µ. It is appropriate
to use the renormalization group equation to eliminate such a dependence. To this aim, we
impose that [12]

1

8πG
µ

∂�TT
0 (µ)

∂µ
= µ

d

dµ
ρTT

eff (µ, r). (32)
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Solving it we find that the renormalized constant �0 should be treated as a running one in the
sense that it varies provided that the scale µ is changing

�0(µ, r) = �0(µ0, r) +
G

16π

(
m4

1(r) + m4
2(r)

)
ln

µ

µ0
. (33)

Substituting equation (33) into equation (31), we find

�0 (µ0, r)

8πG
= − 1

256π2

{(
m2

g − m2
0(M)

)2

[
ln

(∣∣m2
g − m2

0(M)
∣∣

µ2
0

)
− 2 ln 2 +

1

2

]

+
(
m2

g + m2
0(M)

)2

[
ln

(
m2

g + m2
0(M)

µ2
0

)
− 2 ln 2 +

1

2

]}
. (34)

We can now discuss three cases: (1) m2
g � m2

0(M), (2) m2
g = m2

0(M), (3) m2
g � m2

0(M). In
case (1), we can rearrange equation (34) to obtain

�0(µ0, r)

8πG
� − m4

g

128π2

[
ln

(
m2

g

4µ2
M

)
+

1

2

]
, (35)

where we have introduced an intermediate scale defined by

µ2
M = µ2

0 exp

(
−3m4

0(M)

2m4
g

)
. (36)

With the help of equation (36), the computation of the minimum of �0 is more simple. Indeed,
if we define

x = m2
g

4µ2
M


⇒ �0,M(µ0, x) = −Gµ4
M

π
x2

[
ln(x) +

1

2

]
. (37)

As a function of x,�0,M(µ0, x) vanishes for x = 0 and x = exp
(− 1

2

)
and when x ∈[

0, exp
(− 1

2

)]
, �0,M(µ0, x) � 0. It has a maximum for

x̄ = 1

e
⇐⇒ m2

g = 4µ2
M

e
= 4µ2

0

e
exp

(
−3m4

0(M)

2m4
g

)
(38)

and its value is

�0,M(µ0, x̄) = Gµ4
M

2πe2
= Gµ4

0

2πe2
exp

(
−3m4

0(M)

m4
g

)
(39)

or

�0,M(µ0, x̄) = G

32π
m4

g exp

(
3m4

0(M)

m4
g

)
. (40)

In case (2), equation (34) becomes

�0(µ0, r)

8πG
� �0(µ0)

8πG
= − m4

g

64π2

[
ln

(
m2

g

2µ2
0

)
+

1

2

]
(41)

or
�0(µ0)

8πG
= −m4

0(M)

64π2

[
ln

(
m2

0(M)

2µ2
0

)
+

1

2

]
. (42)

Again we define a dimensionless variable

x = m2
g

2µ2
0


⇒ �0,0(µ0, x) = −Gµ4
0

2π
x2

[
ln(x) +

1

2

]
. (43)
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The formal expression of equation (43) is very close to equation (37) and indeed the extrema
are in the same position of the scale variable x, even if the meaning of the scale is different
here. �0,0(µ0, x) vanishes for x = 0 and x = 4 exp

(− 1
2

)
. In this range, �0,0(µ0, x) � 0 and

it has a minimum located in

x̄ = 1

e

⇒ m2

g = 2µ2
0

e
(44)

and

�0,0(µ0, x̄) = Gµ4
0

4πe2
(45)

or

�0,0(µ0, x̄) = G

16π
m4

g = G

16π
m4

0(M). (46)

Finally case (3) leads to

�0(µ0, r)

8πG
� −m4

0(M)

128π2

[
ln

(
m2

0(M)

4µ2
m

)
+

1

2

]
, (47)

where we have introduced another intermediate scale

µ2
m = µ2

0 exp

(
− 3m4

g

2m4
0(M)

)
. (48)

By repeating the same procedure of previous cases, we define

x = m2
0(M)

4µ2
m


⇒ �0,m(µ0, x) = −Gµ4
m

π
x2

[
ln(x) +

1

2

]
. (49)

Also this case has a maximum for

x̄ = 1

e

⇒ m2

0(M) = 4µ2
m

e
= 4µ2

0

e
exp

(
− 3m4

g

2m4
0(M)

)
. (50)

and

�0,m(µ0, x̄) = Gµ4
m

2πe2
= Gµ4

0

2πe2
exp

(
− 3m4

g

m4
0(M)

)
(51)

or

�0,M(µ0, x̄) = G

32π
m4

0(M) exp

(
3m4

g

m4
0(M)

)
. (52)

Remark. Note that in any case, the maximum of � corresponds to the minimum of the energy
density.

A quite curious thing comes on the estimate on the ‘square graviton mass’, which in this
context is closely related to the cosmological constant. Indeed, from equation (44) applied on
the square mass, for the particular value of the normalization point µ0 at the Planck scale, we
get

m2
g ∝ µ2

0 � 1032 GeV2 = 1050 eV2, (53)

while the experimental upper bound is of the order(
m2

g

)
exp

∝ 10−48 − 10−58 eV2, (54)

which gives a difference of about 1098–10108 orders. This discrepancy strongly recalls the
difference of the cosmological constant estimated at the Planck scale with that measured in
the space where we live.
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